Global Optimization: For Some Problems, There's HOPE

Daniel M. Dunlavy

University of Maryland, College Park Applied Mathematics and Scientific Computation

Outline

- Problem and Existing Methods
- Homotopy Optimization Methods
- Protein Structure Prediction Problem
- Numerical Experiments
- Conclusions/Future Directions

Problem

Solve the unconstrained minimization problem

$$f(x^*) = \min_{x \in \mathbb{R}^n} f(x) \qquad (f : \mathbb{R}^n \to \mathbb{R})$$

- Function Characteristics
 - Solution exists, smooth $(f \in C^2(\mathbb{R}^n, \mathbb{R}))$
 - Complicated (multiple minima, deep local minima)
 - Good starting points unknown/difficult to compute
- Challenges
 - Finding solution in reasonable amount of time
 - Knowing when solution has been found

Some Existing Methods

- Exhaustive/enumerative search
- Stochastic search [Spall, 2003]; adaptive [Zabinsky, 2003]
- "Globalized" local search [Pinter, 1996]
- Branch and bound [Horst and Tuy, 1996]
- Genetic/evolutionary [voss, 1999]
- Smoothing methods [Piela, 2002]
- Simulated annealing [Salamon, et al., 2002]
- Homotopy/continuation methods [Watson, 2000]

Outline

- Problem and Existing Methods
- Homotopy Optimization Methods
- Protein Structure Prediction Problem
- Numerical Experiments
- Conclusions/Future Directions

Homotopy Methods for Solving Nonlinear Equations

- Goal
 - Solve complicated nonlinear target system

$$f_1(x) = 0, \qquad (f_1 : \mathbb{R}^n \to \mathbb{R}^n)$$

- Steps to solution
 - Easy template system: $f_0(x^0) = 0$ $(x^0 \ known)$
 - Define a continuous homotopy function:

•
$$h(x,\lambda) = \begin{cases} f_0(x), & \text{if } \lambda = 0\\ f_1(x), & \text{if } \lambda = 1 \end{cases}$$

- Example (convex): $h(x,\lambda) = (1-\lambda)f_0(x) + \lambda f_1(x)$
- Trace path of $h(x, \lambda) = 0$ from $\lambda = 0$ to $\lambda = 1$

Homotopy Optimization Methods (HOM)

Goal

- Minimize complicated nonlinear target function

$$\min_{x \in \mathbb{R}^n} f_1(x), \qquad (f_1 : \mathbb{R}^n \to \mathbb{R})$$

- Steps to solution
 - Easy template function: $f_0(x^0) = \min_{x \in \mathbb{R}^n} f_0(x)$
 - Define a continuous homotopy function:

•
$$h(x,\lambda) = \begin{cases} f_0(x), & \text{if } \lambda = 0\\ f_1(x), & \text{if } \lambda = 1 \end{cases}$$

- Example (convex): $h(x,\lambda) = (1-\lambda)f_0(x) + \lambda f_1(x)$
- Produce sequence of minimizers of $h(x, \lambda)$ w.r.t. x starting at $\lambda = 0$ and ending at $\lambda = 1$

Illustration of HOM

$$x^* = \min_{x \in \mathbb{R}} f_1(x) \qquad h(x, \lambda) = (1 - \lambda)f_0(x) + \lambda f_1(x)$$

Homotopy Optimization using Perturbations & Ensembles (HOPE)

- Improvements over HOM
 - Produces ensemble of sequences of local minimizers of $h(x, \lambda)$ by perturbing intermediate results
 - Increases likelihood of predicting global minimizer
- Algorithmic considerations
 - Maximum ensemble size
 - Determining ensemble members

Illustration of HOPE

Constraint: ensemble size $\equiv |\mathbb{E}| \leq 2$

$$x^* = \min_{x \in \mathbb{R}} f_1(x) \qquad h(x, \lambda) = (1 - \lambda) f_0(x) + \lambda f_1(x)$$

Convergence of HOPE

Goal: $m \in \mathbb{Z}^+$ s.t. $\mathcal{P}(\exists x \in \mathbb{E}_m | x \in S_N) > \rho$

Convergence of HOPE

$$\alpha = \min_{\lambda \in [0,1]} \{ T_{x^*}(\lambda) \} \qquad P = \begin{bmatrix} 1 - 2\alpha & \alpha & & \alpha \\ \alpha & 1 - 2\alpha & \alpha & & \\ & \ddots & \ddots & \ddots & \\ & & \alpha & 1 - 2\alpha & \alpha \\ \alpha & & & \alpha & 1 - 2\alpha \end{bmatrix}$$

No constraints on ensemble size: $|\mathbb{E}_m| = 2^m$

$$\mathbb{E}_0 = \left\{x^0\right\}$$
 ; $\mathbb{E}_k = \mathbb{E}_{k-1} \cup \{\text{perturbed versions of } \mathbb{E}_{k-1}\}$

$$\mathcal{P}(\exists x \in \mathbb{E}_m : x \in S_N) = 1 - \prod_{k=0}^m \left(1 - e_i^T P^k e_N\right)^{\binom{m}{k}}$$

$$\geq 1 - \prod_{k=\kappa}^m \left(1 - P_{N/2,N}^k\right)^{\binom{m}{k}} \quad (\kappa = \min\{i, N - i\})$$

$$= 1 - \prod_{k=\kappa}^m \left(1 - \frac{1}{N} \sum_{l=0}^{N-1} (-1)^l \left(1 - 2\alpha + 2\alpha \cos\left(\frac{2\pi l}{N}\right)\right)^k\right)$$
11/28

Outline

- Problem and Existing Methods
- Homotopy Optimization Methods
- Protein Structure Prediction Problem
- Numerical Experiments
- Conclusions/Future Directions

Protein Structure Prediction

Given the amino acid sequence of a protein (1D), is it possible to predict its native structure (3D)?

Protein Structure Prediction

• Given:

- Protein model
 - Molecular properties
 - Potential energy function (force field)

• Goal:

- Predict lowest energy conformation
 - Native structure [Anfinsen, 1973]
- Develop hybrid method, combining:
 - Energy minimization [numerical optimization]
 - Comparative modeling [bioinformatics]
 - Use **template** (known structure) to predict **target** structure

Protein Model: Particle Properties

- Backbone model
 - Single chain of particles with residue attributes
 - Particles model C_{α} atoms in proteins

- Properties of particles
 - Hydrophobic, Hydrophilic, Neutral
 - Diverse hydrophobic-hydrophobic interactions

Protein Model: Energy Function

$$E(X) = E_{bl}(X) + E_{ba}(X) + E_{dih}(X) + E_{non}(X)$$

$$E_{bl}(X) = \sum_{i=1}^{n-1} \frac{k_r}{2} \left(r_{i,i+1} - \bar{r} \right)^2 \qquad X_i \stackrel{X_i}{\longleftarrow} X_{i+1}$$

$$X_i \stackrel{\bullet}{\longleftarrow} X_{i+1}$$

$$E_{ba}(X) = \sum_{i=1}^{n-2} \frac{k_{\theta}}{2} \left(\theta_i - \bar{\theta}\right)^2$$

$$X_{i+1}$$

$$X_{i}$$

$$X_{i+2}$$

$$E_{dih}(X) = \sum_{i=1}^{n-3} \left[A_i (1 + \cos \phi_i) + B_i (1 + \cos 3\phi_i) \right]$$

$$E_{non}(X) = \sum_{i=1}^{n-3} \sum_{j=i+3}^{n} \gamma_{ij} \left\{ \alpha_{ij} \left(\frac{\bar{r}}{r_{ij}} \right)^{12} - \beta_{ij} \left(\frac{\bar{r}}{r_{ij}} \right)^{6} \right\}$$

Homotopy Optimization Method for Proteins

- Goal
 - Minimize energy function of target protein

$$\min_{X \in \mathbb{R}^{3n}} E^{1}(X), \qquad (E^{1} : \mathbb{R}^{3n} \to \mathbb{R})$$

- Steps to solution
 - Energy of template protein: $E^0(X^0) = \min_{X \in \mathbb{R}^{3n}} E^0(X)$
 - Define a homotopy function:
 - $H(X,\lambda) = \rho^{0}(\lambda)E^{0}(X) + \rho^{1}(\lambda)E^{1}(X)$
 - Deforms template protein into target protein
 - Produce sequence of minimizers of $H(X, \lambda)$ starting at $\lambda = 0$ and ending at $\lambda = 1$

Outline

- Problem and Existing Methods
- Homotopy Optimization Methods
- Protein Structure Prediction Problem
- Numerical Experiments
- Conclusions/Future Directions

Numerical Experiments

9 chains (22 particles) with known structure

Loop Region

Sequence Matching (%)

	A	В	С	D	Е	F	G	Н	I
A	100								
В	77	100							
С	86	91	100						
D	91	86	77	100					
Е	73	82	73	82	100				
F	68	68	59	77	86	100			
G	68	68	59	77	86	100	100		
Н	68	68	59	77	86	100	100	100	
I	73	59	64	68	77	73	73	73	100

Hydrophobic Hydrophilic Neutral

Numerical Experiments

Numerical Experiments

- 62 template-target pairs
 - 10 pairs had identical native structures
- Methods
 - HOM vs. Newton's method w/trust region (N-TR)
 - HOPE vs. simulated annealing (SA)
 - Different ensemble sizes (2,4,8,16)
 - Averaged over 10 runs
 - Perturbations where sequences differ

Ensemble SA
Basin hopping $T_0 = 10^5$

Cycles = 10

Berkeley schedule

- Measuring success
 - − Structural overlap function: $0 \le \chi \le 1$
 - Percentage of interparticle distances off by more than 20% of the average bond length (\bar{r})
 - Root mean-squared deviation (RMSD)

Results

				Mean	Time
Method	$\chi = 0$	Success	Mean χ	RMSD	(sec)
HOM	15	0.24	0.36	0.38	10
N-TR	4	0.06	0.45	0.55	1

	Ensemble				Mean	Time
Method	Size	$\chi = 0$	Success	Mean χ	RMSD	(sec)
HOPE	2	33.40	0.54	0.14	0.17	35
	4	43.10	0.70	0.08	0.11	65
	8	54.60	0.88	0.03	0.04	115
	16	59.00	0.95	0.01	0.02	200
SA	2	13.10	0.21	0.27	0.36	52
	4	20.80	0.34	0.19	0.26	107
	8	28.50	0.46	0.13	0.19	229
	16	40.20	0.65	0.08	0.12	434

Results

Success of HOPE and SA with ensembles of size 16 for each template-target pair. The size of each circle represents the percentage of successful predictions over the 10 runs.

Outline

- Problem and Existing Methods
- Homotopy Optimization Methods
- Protein Structure Prediction Problem
- Numerical Experiments
- Conclusions/Future Directions

Conclusions

- Homotopy optimization methods
 - More successful than standard minimizers

HOPE

- For problems with f^0, x^0 (E^0, X^0) readily available
- Solves protein structure prediction problem
- Outperforms ensemble-based simulated annealing
 - No fine tuning of SA

HOPEful Directions

- Protein structure prediction
 - Protein Data Bank (templates), TINKER (energy)
 - Probabilistic convergence analysis (\mathbb{R}^n)
- HOPE for large-scale problems
 - Inherently parallelizable
 - Communication: enforce maximum ensemble size
- Sandia
 - Protein structure prediction (Bundler)
 - LOCA, APPSPACK
 - SGOPT

Other Work/Interests

- Optimization
 - Surrogate models in APPSPACK (Sandia)
- Linear Algebra
 - Structure preserving eigensolvers
 - Quaternion-based Jacobi-like methods
 - RF circuit design efficient DAE solvers
 - Preconditioners, harmonic-balance methods
- Information processing/extraction
 - Entity recognition/disambiguation
 - Persons, locations, organization
 - Querying, clustering and summarizing documents

Acknowledgements

- Dianne O'Leary (UM)
 - Advisor
- Dev Thirumalai (UM), Dmitri Klimov (GMU)
 - Model, suggestions
- Ron Unger (Bar-Ilan)
 - Problem formulation
- National Library of Medicine (NLM)
 - Grant: F37-LM008162

Thank You

Daniel Dunlavy – HOPE

http://www.math.umd.edu/~ddunlavy ddunlavy@math.umd.edu